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AN ALGORITHMIC SOLUTION FOR FRICTIONAL CONTACT 
PROBLEMS SUBJECTED TO A TWISTING MOMENT 

Dong  Hoon Choi* 

(Received March 6, 1987) 

An efficient numerical procedure is devised and applied for the frictional contact problems subjected to a normal load and a 
twisting moment. The traction distribution and the region of micro-slip on any shape of contact area can be effectively found by 
iteratively using a modified linear programming technique. The compliance of the contact system is also evaluated. The numerical 
solution obtained by the suggested procedure agrees very well with Lubkin's theory for the circular contact area. The algorithmic 
solution for disconnected contact areas on semi-infinite bodies is presented to illustrate generality and effectiveness of the proposed 
numerical procedure. 
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1. INTRODUCTION 

A small torsional couple is applied across the contact 
surface of two elastic bodies which have been pressed 
together by a force perpendicular to their common tangent 
plane(Fig. 1.). From a solution by H. Neuber which pertained 
to a hyperbolic groove in a twisted shafte, R.D. Mindlin 
obtained solutions for the circular and the elliptic contact 
area under the assumption of no slip on the interface(Mindlin, 
1949). The torsional compliance was given in terms of com- 
plete elliptic integrals and the resultant tangential traction 
was found to rise from zero at the center to infinity at the 
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Contact of spherical bodies subjected to a twisting 
moment 
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edge of the contact surface, which is physically unattainable. 
J.L. Lubkin allowed slip in circular contact by assuming 

that the tangential component of traction is equal to the 
product of a constant friction coefficient and the Hertzian 
pressure for the region over which slip occurs(Lubkin, 1951). 
He obtained a continuous expression for the traction, a 
formula relating the radial depth of penetration of slip to the 
magnitude of the applied moment and a relationship between 
the moment and the rigid body rotation. 

H. Deresiewicz extended the Lubkin solution to the contact 
of elastic sphere under  an oscillating torsional couple (Deresi- 
ewicz, 1954). 

M. Het6nyi and H. McDonald treated only the limiting case 
where the gross torsional movement impends for the contact 
of elastic spheres(Het6nyi and Macdonald, 1958). 

All of the analytical solutions for the firictional contact 
problem, however, are restricted to the case of the circular 
contact area. 

The purpose of this study is to formulate a general and 
effective procedure for evaluating the traction distribution, 
the localized microslip region and the compliance on any 
shape of contact area formed by a normal load under a 
twisting moment lower than that necessary to cause gross 
spin. The suggested procedure utilizes a modified linear 
programming technique which was introduced to solve the 
frictionless contact problem subjected to a normal 
load(Conry and Seireg, 1971). 

2. BOUNDARY CONDITIONS 

Within the limits of the small strain and small rotation 
theory, Mindlin presumed that there is no change in the 
normal component of traction across the contact surface and 
that there is no relative displacement on the contact surface 
under the assumption of no slip when a twisting moment is 
superposed on a normal load(Mindlin, 1949). The problem is 
thus reduced to a problem of the plane with the following 
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boundary conditions. 

U~=ry ,  U~=a~=O inside the contact boundary (1) 

r,~ = r~ ,=a , : : 0  outside the contact boundary (2) 

lira ( U~, Us, UA =0 (3) 
r , z - ~  

where 

U,,Us,  U,  : Cylindrical coordinate components of 
displacement 

r,~,r,s,a~: Cylindrical coordinate components of 
traction on the plane z = 0 

r : Radial distance from the center of rota- 
tion 

7:  Angle of rigid rotation of the entire 
contact surface relative to distant lines 
in the solid 

Because the tangential component of traction becomes 
infinite at the edge of the contact surface(Mindlin, 1949), slip 
must be expected to occur, starting at the goundary and 
presumably progressing inward. 

To accomodate the evident slip, we retain Eqs.(2) and (3) 
but must modify Eq.(1). In the slip region, the tangential 
component of traction r is assumed to take the value of the 
product of a constant friction coefficient f and the normal 
contact pressure p, following Cattaneo(Cattaneo, 1983). This 
proportionality has been corroborated by photoelastic 
measurements(Het~nyi and MacDonald, 1958). In the no-slip 
region, the rigid rotation 7 remains unaffected and the sur- 
face traction is required to remain finite, the modified bound- 
ary conditions for the contact boundary can be expressed as 

Uo = rT, U~=a.=O in the no-slip region (4) 

r -- fP, a. = 0 in the slip region (5) 

3. P R O P O S E D  A L G O R I T H M  

(Us)a: Discretized displacement in circumferential direc- 
tion at a point k 

rk: Radial distance of a point k from the center of 
rotation 

7 : Angle of rigid rotation of the contact system 
( Y~)k : Slack variable for deformation at a point k 

(Y~). =0 in the no-slip region 
(Y~),>0 in the slip region 

The constraints on the traction force values can also be 
stated as : 

F,  + ( Y2) ,, = f P , ,  k=l ,2 , . . . ,N  (7) 

where 

Fk: Discretized traction force in the direction deter- 
mined by the pre-processor at a point k 

f : Coefficient of friction 
P~ : Discretized normal force at a point k 

( YD �9 : Slack variable for the traction force at a point k 

(Y2)k >0 in the no-slip region 
(II2) k = in the slip region 

The codition for moment equilibrium is expressed as : 

( 0 , .  ~,) rkFk = M (8) 

where 

0k : Unit vector in circumferential direction at point k 
^ 

~, : Unit vector in the direction of the traction force at a 
point k 

M : Applied twisting moment 

Since the point k must be either in the no-slip region or in 
the slip region, the following complementary condition should 
be satisfied. 

3.1 P r e - P r o e e a s o r  
The contacf area is discretized into a finite number of 

rectangular grid elements of equal size. The tangential force 
and displacement at the center of each element are assumed 
to represent the distributed tangential components of traction 
and displacement over the finite area of each element respec- 
tively. 

To linearize this nonlinear contact problem, the directions 
of discrete tangential forces are assumed to be oriented so as 
to make the direction of discrete tangential displacements 
circumferential at the grid points. A pre-processor determines 
these directions by enforcing the discrete tangential displace- 
ment to be in circumferential direction. 

3.2 Problem Formulation with Specified Center 
of  Rotation 

The condition for compatibility of deformation can be 
stated as follows: 

( U o ) k + ( Y O . = r k T ,  k= 1,2,'- ',N (6) 

where 

N : Number of discretized grid elements 

either ( Y~).=0 or ( Y,)h=0 (9) 

Assuming elastic contact, the discretized elastic deforma- 
tion at a point k can be presented in terms of the discretized 
traction forces as follows: 

N 

( Uo)k= ~!, s.~F~ (10) 
j : l  

where 

S , j :  Elastic deformation in circumferential direction at a 
point k due to a unit force in the direction pre- 
determined by the pre-processor at a point j 

Incorporating the condition for the compatibility of defor- 
mation, the constraints on the traction force values, the 
condition for moment equilibrium, the complementary condi- 
tion and the non-negativity conditions, the discretized contact 
problem can be formulated as follows : 

Find(F,  I21, I22,7) which satisfies the following constraints 

S F  + I Y ~ :  ~r 
If+I?2=/# 
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N 

~(Ok ' r  rkFk=M 
k = l  

Y~k=O or Y~k=O, k = l , . . . , N  
Fh~_O, Y~k >O, Y2k ~_O,7 >O,k= l , . . . ,N 

(H) 

where 

S 
I 
P 

71 
75 
p 

N by N matrix of influence coefficients 
N by N indentity matrix 
Vector of tangential forces in the directions pre- 
determined by the suggested pre-processor 
Vector of slack variables for tangential displacements 
Vector of slack variables for tangential forces 
Vector of normal forces 
Vector of radial distances from the specified center of 
rotation 

Notice that all the variables are non-negative and all the 

constraints except the complementary condition are linear in 
the formulation. In other words, the problem can be solved 
using the powerful linear programming technique if the 
complementary condition can be incorporated in the tech- 
nique. This complementary condition can be accomodated by 
modifying the entry rule of the present linear programming 
technique(Conry and Seireg, 1971). The above formulation is 
now restated in a form suitable for a modified linear pro- 
gramming as follows: 

2 N + I  

Minimize 5?. z~ 
i = l  

subject to S F + I Y 1 -  Pr+IZ ,=O 
IF + lY~ + I22= fI~ 

N ^ ^ 

(Ok" r rkF, + z,N+, = M  
k~l 

Y~k=O or Y2k=O, k = l  ..... N 
F,_~O, Y1, >0, Y2k ~_O,7 >O,k= l ..... N 

(12) 

Start with initial table 
canonical relative to 
artificial variables and 
objective value w 

L 
f 

[ JSTART=I  [ 

Are all {cslj~ [JSTART,~ 
3N + 1]} non-negative? / /  

Choose entering column s 
according to Brand's rule 
s=Min{j~ [JSTART,3N +l]lc~<0} 

l 
Choose leaving row r by ] 
br/ars = Min {bda~la~ > O, f i~  [1,2N+1]} 

1 
~ I f  s corresponds to ~ ( , ~  

is Yzk in the basis? 
If s corresponds to k, 
is Ylk in the basis? 

Yes 

Would Ylk r e p l a c e  Y2k) 
'k or Yzk replace YI,? 

' 1 [ JSTART = s + 1 

Y e s  

? 
Print the feasible 
solution and Stop 

No 

Yes 

1 
Is w almost zero? ~ . ,  

' to. 

Fig. 2 

Replace the rth basic variable 
by sth variable with Jordan 
exchange by pivoting on ars 

Flow chart for the modified linear programming 
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z~-~ 0 i = 1,..., 2N + 1 uk, vk : Rectangular components of the tangential dis- 
placement at a point k 

where xk ,y , :  Rectangular components of the position of a 
point k 

2, : Vector of the first N artificial variables for the x~,y~ : Rectangular components of the center of 
compatibility condition of deformation rotatioin 

z72 :Vector  of the next N artificial varibles for the (Y~),,(Y~),: Non-negative slack variables for the dis- 
constraints on the values of tangential forces placements at a point k 

Z*N+~ : Artificial variable for the moment equlibrium equa- (Y~) k-- (Yo), = 0 in the no-slip region 
tion ( Y~)k,( Yo)k>0 in the slip region 

The flow chart for the algorithm utilizing the modified 
linear programming is shown in Fig. 2. 

The constraints on the values of tangential forces can also 
be stated as: 

3.3 Iterative Procedure 
For the case in which the center of rotation is not easily 

found by inspection, e.g. the case of asymmetry, an iterative 
procedure is used to obtain the center of rotation (x~,y~) with 
respect to the centroid and the corresponding traction distri- 
bution, the local micro-slip region and the angle of rigid 
rotation. Since there is no applied tangential force, the sum of 
the diseretized tangential forces, denoted the residual force 
here, should be zero when the real center of rotation is found. 
It is the exiting criterion of the following iterative procedure. 
(1) Guess the first two centers of rotation and find the two 
corresponding residual forces at the first two iteration. 
(2) Find the next center of rotation by the linear interpola- 
tion scheme. 
(3) Determine the direction of discretized tangential forces 
by the pre-processor. 
(4) Obtain the tangential traction distribution using the 
modified linear programming technique. 
(5) Calculate the residual force. 
(6) If the residual force is negligible, the solution is found. 
Otherwise, go to (2) and repeat until the solution is found. 

4. FORMULATION USING NONLINEAR 
PROGRAMMING 

To linearize the nonl inear  contact  problem for 
computational efficiency, the following two schemes have 
been employed in the proposed algorithm. 
(1) The directions of the discretized tangential forces are 
predetermined about the specified center of rotation at each 
iteration under the implied assumption that the directions 
will not deviate much for those with slip allowed from those 
with no slip. 
(2) The actual center of rotation is found by the iterative 
procedure described in 3.3. 
The same problem is formulated by a system of nonlinear 
equations without any linearization. The rectangular compo- 
nents of the discretized tangential forces, the angle of rigid 
rotation and the center of rotation are obtained by solving the 
system of nonlinear equations once and will be compared 
with the solution found by using the proposed algorithm. 

The condition for compatibility of deformation can be 
stated as : 

(X~+ y~)~z+( YF) k=:fPk (15) 

where 
Xk, Yk : Rectangular components of the tangential force at a 

point k 
(YF) k : Non-negative slack variable for the force at a point 

k 
(YF) ,>0 in the no-slip region 
(YF) k=0 in the slip region 

The condition for the equlibrium can be expressed as : 

N 

E X , = 0  ~, Y,=0 
k = l  k ~ l  

N 

[ - - ( yk - - yc )X .+(x . - -Xc )  Y , ] = M  
k = l  

(16) 

The complementary condition can be written as : 

( Y . ) . = (  Y~)k=0 or ( YF) k=O, k=l ,2  ..... N (17) 

Assuming elastic contact, the deformations at a point k can 
be presented in terms of the forces as follows : 

N 

u,  = ~ (a,~Xj + c,~ Yj) 
N 

v~ = ~ ( c~X~ + b~ Y~) (18) 

where 
ak~ :Deformation in the x-direction at a point k due to a unit 

force in the x-direction at a point j 
bkj :Deformation in the y-direction at a point k due to a unit 

force in the y-direction at a point j 
c. j  :Either deformation in the x-direction at a point k due to 

a unit force in the y-direction at a point j or deformation 
in the y-direction at a point k due to a unit force in the 
x-direction at a point j 

This system of non-linear equations with inequality con- 
straints and the complementary condition can be greatly 
reduced into the equivalent system of equations without any 
inequality constraints by using the following lemma : 

a=b+=a>O, a-b~-O, a ( a - b ) = O  

lu,l+(g~),::l-(yk-yc)rl, k = 1 , 2  ..... N 

[v~l+(Y~)~=l(x,-xc)rl, k = 1 , 2  ..... N 

where 

(13) 
(14) 

where (19) 

b if b~0  
b+= 0 if b<0  



To circumvent the difficulty of finding a set of solutions for 
a system of highly nonlinear equations, the formulation suit- 
able for obtaining the solution (.~, Y,r,x~,y~) using the non- 
linear programming technique can be stated as follows : 

2N~-3 

Minimize ~ z~ 

A 

Q -  
X 

U )  
U~ 

U') 

O 
O 

N 

subject to [{I -  (y ,  - y ~ )  r l -  s~l( a,,jXs + c,r Y`/)[} - {fPk 
N 

- (Xl+  Y~)'2}]+- [I-(Y,-y~) r l - I N  (a,`/X`/ 
. i=1 

+c,`/Y`/)[]+zk=O, k = l , ' " , N  
N 

[{l(x, - xc) r l -  IN ( c,`/x`/+ b,~ YAI} - {fP, - (X~ 
j = l  

N 
+ y2 .~ x .= *) }]+--[l( , -xc)r-I /~(ck`/X`/+b,~g~)l]  

+ z~+k =O, k= l , " ' ,N  (20) 
N 

Xk+z2~+~=0 
k = l  

~,, Y,+  Z2N+2:0 
k = l  

N 

~, [--(yJ,--yc) Xh +(Xk--Xc) Yk]+ Z2N+3=M 
k = I  
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SCALED RADIUS (r/a) 

Fig. 3 Contact stresses on circular contact area 

. C O M P A R I S O N  B E T W E E N  T H E  
P R O P O S E D  I N E R A T I V E  
P R O C E D U R E  A N D  N O N  

- L I N E A R  F O R M U L A T I O N  

At this point, the reasons for developing the iterative 
procedure utilizing the pre-processor and the modified linear 
formulation instead of using the complete non-linear formula- 
tion will be discussed. 

First of all, the iterative procedure is guaranteed to yield 
the solution, while the non-linear formulation may or may not 
give the solution. Morever, the solution by non-linear formu- 
lation could be just one of many local solutions. 

Secondly, the iterative procedure does not need the initial 
guess while the non-linear formulation needs a very good 
initial guess on all the variables. 

Thirdly, the algorithm for the iterative procedure is defi- 
nite and concise. Its codes can be easily written by the user 
while the effective algorithm should be provided for the 
non-linear formulation. 

Finally, the iterative procedure is much more efficient than 
the non.linear formulation in terms of time, if a good initial 
guess cannot be given for the non-linear optimization. I such 
a case, the search may progress for a very long time. 

6. I L L U S T R A T I V E  E X A M P L E S  

6.1 C i r c u l a r  H e r t z i a n  C o n t a c t  
The frictional contact between a steel sphere(E = 207 GPa, 

u = 0.3) with a radius of 25mm on a steel sphere of the same 
radius is selected as an example for comparison with the 
analytical solution by Lubkin(Lubkin, 1951). According to the 
Hertz theory, the applied normal load of 9600N forms the 
circular contact area of radius a and the contact pressure 
dis t r ibut ion p, the magni tudes  of which are as 
follows(Johnson, 1985) : 

a = 0.93mm, p = 531011 - (r/a) 2]~12MPa 

A grid with 80 square elements is used to discretize the 
circular contact area. The following values are given : 

M=O.3N.m, f =O.1 

The influence coefficients are calculated by using the solution 
for a semi-infinite body subjected to a tangential force since 
the radius of the circular contact area is small in comparison 
with the radii of the spheres in contact(Love, 1944). 

A comparison between Lubkin's theory(solid line) and the 
numerical results(symbol o) is plotted in Fig. 3, and good 
agreement can be seen. The rigid body rotation(0.10641 • 10 -2 
rad) is also found to compare favorably with Lubkin's theory 
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f2=0.]2 P2=70 MPa 

Index Stress (MPa} 

A 2.75 
B 5.50 
C 8.25 
D Ii.00 
E 13.75 
F ]6.50 

Fig.  4 
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Magnitude of stress on discrete contact area 
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Fig. 7 Direction of stress on discrete contact area using 
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(0.11119x 10-2rad), with a deviation of 4.30%. 

6 .2  D i s c o n n e c t e d  C o n t a c t  A r e a s  o n  S e m i - I n f i n i t e  
B o d i e s  

Two disconnected square contact areas of the same 
size(15mm • 15mm) semi-infinite steel bodies(E = 207 GPa, u = 
0.3) are considered in this case. Uniform pressure is assumed 
on each contact region(p~ = 140MPa,p~= 70MPa). The coeffi- 
cient of friction on both region 1 and region 2 is assumed to 
be the same (A=f2=0.12). The twisting moment is taken as 
55 N" m. Since the contact regions are assumed on semi- 

Index Stress (MPa) 

A 2.75 
B 5.50 
C 8.25 
D II.00 
E ~3.75 
F 16.50 

infinite bodies, the solution for a semi-infinite body subjected 
to a tangential force is again employed to obtain the influence 
coefficients(Love, 1944). 

The contours of the magnitude and the direction of the 
traction using the proposed iterative procedure are shown in 
Figs. 4. and 5. As would be expected, different traction 
distributions are shown in the two regions, and the center of 
rotation is consequently found to be displaced from the 
centroid. Three iterations were necessary and the CPU time 
elapsed was 2 minutes and 59 seconds on a HARRIS 800. 

The contour plots for the corresponding results using the 
non-linear programming are also shown in Figs. 6 and 7. 
When the results of the modified linear programming with 
the centroid as the center of rotation were used as a set of 
initial guesses for nonlinear programming, the CPU time used 
was 8 minutes and 56 seconds. 

The results using the proposed method compare favorably 
with those using the non-linear programming. 

The location of the center of rotaion with respect to the 
centroid is plotted versus the applied twisting moment in 
Fig. 8. 

The development of the slip region with the increasing 

F i g .  6 

~) 55 N-m 8 
E 
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o~ 4 
u _  
o 3 
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0 1 
fl=0.12 pl=140 MPa 

Magnitude of stress on discrete contact area using 
NLP F i g .  8 
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Location of center rotation w.r.t, centroid 
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7 6 5 

7 6 5 

7 6 5 

7 6 5 

6 6 6 5 

5 5 5 3 

33 44 55 66 77 85 87 N-m 

Development of slip on discrete contact area with 
increased twisting moment 

twisting moment is shown in Fig. 9. The numbers(i,2,3,...,7) 

refer to the order of the progression of slip when the corre- 
sponding twisting moments(33,44,...,87 N" m) are increasingly 
applied. 

The curve relating the angle of twist and the twisting 
moment is plotted in Fig. 10. 

7. CONCLUSION 

A relatively simple technique has been suggested to solve a 
frictional contact  problem subjected to a twisting moment 
between two elastic non-conforming bodies. The application 
of the method to the contact problem between two spheres 
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0 

Fig. 10 
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ANGLE OF TWIST (XI[3 4 tad} 

Twisting moment-angle of twist curve 

has proved its accuracy by comparison with Lubkin's theory. 
The method has been successfully applied to the case of an 
asymmetric contact area to demonstrate its versatility. The 
proposed technique seems to be a general and effective 
procedure for the solution of this class of contact problem. 
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